

Серия 700

Редукционный клапан поддерживающий давление «до себя»

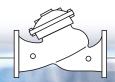
Модель 723

- Защита зон с пониженным давлением
- Определение приоритетных зон
- Предотвращение осушения водовода
- Контролируемое заполнение водовода
- Защита насосного агрегата от перегрузок и кавитации

Клапан модели 723 – редукционный клапан поддерживающий давление «до себя» является гидравлически управляемым регулирующим клапаном с диафрагменным приводом, выполняющим две независимые функции:

- Поддержание заранее заданного давление на входе вне зависимости от изменения расхода или давления на выходе
- Предотвращение увеличения давления на выходе выше заранее заданного вне зависимости от изменения расхода или давления на входе

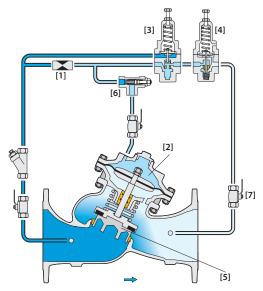
Преимущества и особенности

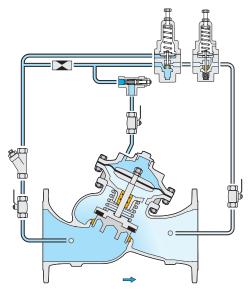

- Автономный не требует внешнего источника энергии
- Прост и удобен в обслуживании
- Двухкамерная конфигурация
 - □ Плавное реагирование
 - □ Диафрагма защищена от повреждений
- Универсальная конструкция возможность добавления дополнительных функций
- Разнообразие дополнительных аксессуаров
- "Y" или угловое исполнение минимальные потери напора
- Устойчивое к кавитации седло, выполненное из нержавеющей стали
- Беспрепятственная, полнопроходная конструкция
- Уплотнительный диск с V портом стабильная работа при малых расходах

Основные дополнительные функции

- Электромагнитное управление 723-55
- Обратный клапан 723-20
- Высокочувствительный пилот 723-12
- Электромагнитное управление с обратным клапаном 723-25
- Защита от избыточного давления «после себя» 723-48
- Пропорциональный 723-PD

См. соответствующую документацию Бермад




Модель 723 Серия 700

Принцип действия

Клапан модели 723 оснащен двумя настраиваемыми, двухходовыми, поддерживающим давление и редукционным пилотами, функционирующими независимо друг от друга. Конструктивное сужение [1] обеспечивает постоянный поток с входа в верхнюю рабочую камеру [2]. Пилот, поддерживающий давление [3] и редукционный пилот [4] контролируют отток из верхней рабочей камеры. Если давление на входе опускается ниже настроек пилот [3], он закрывается. Это приводит к прикрытию клапана и поддержанию давления на входе до требуемого значения. Если давление на входе поднимается выше настроек пилота [3], давление с верхней рабочей камеры, через открытый пилот [4], стравливается и клапан открывается. Если открытие клапана приводит к увеличению давления на выходе выше настроек пилота [4], он закрывается. Это приводит к прикрытию клапана и снижению давления на выходе до требуемого значения. V-порт диск [5] (опционально) используется для обеспечения более точного, стабильного и плавного регулирования. Односторонний контролируемый игольчатый клапан [6] корректирует скорость реакции клапана, изменяя объем потока из верхней рабочей камеры. Шаровой кран [7] позволяет производить закрытие вручную.

Режим поддержания давления «до себя»

Режим понижения давления

Характеристики контура управления

Стандартные материалы:

Пилот:

Корпус: Нержавеющая сталь 316 или бронза

Уплотнения: Синтетический каучук

Пружина: Оцинкованная или нержавеющая сталь

Трубки и фитинги:

Нержавеющая сталь 316 или медь и латунь

Аксессуары:

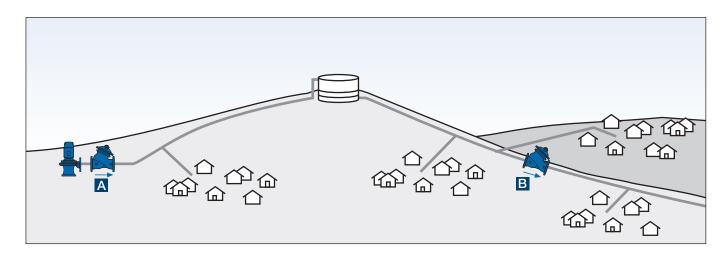
Нержавеющая сталь 316, латунь и каучуковые эластомеры

Диапазон настроек пилота:

от 0.5 до 3.0 атм от 0.8 до 6.5 атм от 1 до 16 атм от 5 до 25 атм

Примечание:

- Для подбора оптимального размера клапана требуется давление на входе, давление на выходе и расход
- Рекомендуемая скорость потока: 0.3-6.0 м/сек
- Минимальное рабочее давление: 0.7 атм (Для более низких давлений проконсультируйтесь на заводе).



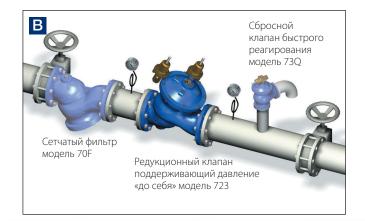
Модель 723 Серия 700

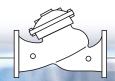
Применение

Скважинный насос подает воду потребителям и наполняет резервуар. Резервуар подает воду в зоны с разными геодезическими отметками. Обе части системы требуют поддержания и понижения давления.

Водозабор грунтовых вод

Уровень грунтовых вод, как правило, изменяется в зависимости от: сезонных изменений, характеристик почвы и потребления. В таких системах есть необходимость в решении нескольких задач:


- Подача воды потребителям, предотвращение опорожнения линий, защита насоса от кавитации и перегрузок требует поддержания давления.
- Скважинный насос обеспечивает постоянную разницу между входным и выходным давлением.
 Если уровень воды повышается, то увеличивается выходное давление и возникает необходимость его понижения.
- Клапан модели 723 решает эти задачи в комплексе.
 Добавление функции обратного клапана,
 позволяет уменьшить затраты на установку
 отдельного обратного клапана.


Самотечные распределительные линии

В случае если резервуар подает воду в зоны с разными геодезическими отметками:

- Потребителям, расположенным в «высокой» зоне требуется защита от перерасхода в «нижней» зоне.
- Потребителям, расположенным в «нижней» зоне требуется защита от избыточного давления. Клапан модели 723, выполняющий обе функции, как нельзя лучше, подходит этим требованиям.

Серия 700 Модель 723

Техническая информация

Размеры: DN40-1200; 11/2-48" Тип соединения (класс давления): Фланцевое: ISO PN16, PN25 Резьбовое: BSP или NPT

Другие: возможны по заказу

Исполнение:

"Ү"- исполнение и угловое,

"G"- исполнение (ĎN600-1200; 24"- 48") Рабочая температура: Вода до 80°C (180°F)

Стандартные материалы:

Корпус и узел привода: ВЧШГ

Внутренние детали: Нержавеющая сталь, бронза, сталь с покрытием

Диафрагма: Армированный нейлон

Уплотнения: Синтетический каучук

Покрытие: Эпоксидное (цвет голубой), разрешенное стандартом NSF, WRAS & ГОСТ или электростатическая полиэстерная пудра (цвет зеленый).

Расчет разницы давлений

$$\Delta P = \left(\frac{Q}{Kv}\right)^2$$

ДР = Разница давления на полностью открытом клапане (атм)

 $\mathbf{Q} = \text{Расход} (\text{м}^3/\text{час})$

Кv = Коэффициент пропускной способности (метрический) (расход в ${\rm M}^3/{\rm vac}$, ${\rm \Delta}{\rm P}=1{\rm arm}$, при температуре воды 15°C)

Таблица размеров и коэффициента пропускной способности (Kv)

700-ES	мм	40	50	65	80	100	125	150	200	250	300	400	500	600
Плоский диск	1	54	57	60	65	145	215	395	610	905	1.520	2,250	4,070	4,275
V-порт		46	48	51	55	123	183	336	519	769	1,292	2,027	3,460	3,634
700-EN/800	MM	40	50	65	80	100	150	200	250	300	350	400	450	500
Плоский диск		42	50	55	115	200	460	815	1,250	1,850	1,990	3,310	3,430	3,550
V-порт		36	43	47	98	170	391	693	1,063	1,573	1,692	2,814	2,916	3,018
					*								•	

700	Тип	M5	M6	M5L
Большие диаметры	мм	500-800	600-900	750-1200
Плоский диск		6,000	7,350	11,100

Серия 700-ЕЅ	мм	40	50	65	80	100	125	150	200	250	300	350	400	500	600
Ү-образное исполнение	7	230	230	290	310	350	400	480	600	730	850	980	1,100	1,250	1,450
	W 16.	150	165	185	200	235	270	300	360	425	530	555	626	838	845
	₽ h	80	90	100	105	125	142	155	190	220	250	282	320	385	435
H W W	Z H	240	250	250	260	320	375	420	510	605	725	862	895	1,185	1,235
	Ѕ Вес (кг)	10	10.8	13.2	15	26	40	55	95	148	255	409	436	1,061	1,173
L															
Серия 700-EN	MM	80		100	15	0	200	2	50	300	3.	50*	400*		450*
Ү-образное исполнение	* * *	310		350	48	0	600	7.	30	850	7	733	990		1,000
	- I VV	200		235	30	0	360	4.	25	530	5	550	740		740
	⊖ h	105		125	15:	5	190	2.	20	250	2	268	300		319
HE THE THE	≅ H	260		320	420	0	510	60	05	725	8	366	1,108		1,127

Š	Rec (KL)		15		26		
	MM	600	700	750	800	900	
16		1,450	1,650	1,750	1,850	1,850	
Ö	W	1,250	1,250	1,250	1,250	1,250	
Z	h	470	490	520	553	600	
NAC	Н	1,965	1,985	2,015	2,048	2,095	

Вес (кг) 3,250 3,700 3,900 4,100 4,250

	мм	600	700	750	800	900
25	L	1,500	1,650	1,750	1,850	1,850
.; O	W	1,250	1,250	1,250	1,250	1,250
Z	h	470	490	520	553	600
				2,015		
<u>×</u>	Вес (кг)	3,500	3,700	3,900	4,100	4,250

Серия 700 М5

G-образное исполнение

	MM	500	600	700	750	750L	800	800L	900	1000	1200
16	L*	>	1,450	1,650	1,750	\geq	1,850	1,850	2,050	2,180	2,260
10;	W	000	965	965	965	000	965	1,425	1,425	1,425	1,485
PN 1	h	аПр	435	493	523	апр	530	545	600	650	760
	Н	0.3	1,350	1,410	1,440	0.3	1,448	1,780	1,835	1,885	2,015
150	Вес (кг)		1,590	1,745	1,825		1,920	3,200	3,350	3,500	3,900

Резьбовое соединение

Клапан в Угловом исполнении

	MM	40	50	65	80
	L*	155	155	212	250
F	W	122	122	122	163
ے ن	h	40	40	48	56
BS	Н	201	202	209	264
	Вес* (кг)	5.5	5.5	8	17

Н		
	RL	

	MM	50	65	80
	L*	121	140	159
<u>-</u>	W	122	122	163
NPT	R	40	48	55
BSP;	h	83	102	115
8	Н	225	242	294
	Вес* (кг)	5.5	7	15

* по размерам для PN25 проконсультируйтесь в техническом отделе

При заказе сформулируйте свои требования:

- Основной тип клапана
- Дополнительная комплектация
- Исполнение
- Материал корпуса
- Тип присоединения
- Покрытие
- Положение клапана в зависимости от напряжения (в случае если соленоид обесточен)
- Материал трубок и фитингов
- Рабочие данные
- Данные по давлению
- Данные по расходу
- Данные резервуара
- Настройки

^{*}Используйте Руководство для заказов